38th Polish Mathematical Olympiad Problems 1987



38th Polish Mathematical Olympiad Problems 1987

A1.  There are n ≥ 2 points in a square side 1. Show that one can label the points P1, P2, ... , Pn such that ∑i=1n |Pi-1 - Pi|2 ≤ 4, where we use cyclic subscripts, so that P0 means Pn.


A2.  A regular n-gon is inscribed in a circle radius 1. Let X be the set of all arcs PQ, where P, Q are distinct vertices of the n-gon. 5 elements L1, L2, ... , L5 of X are chosen at random (so two or more of the Li can be the same). Show that the expected length of L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 is independent of n.

A3.  w(x) is a polynomial with integral coefficients. Let pn be the sum of the digits of the number w(n). Show that some value must occur infinitely often in the sequence p1, p2, p3, ... .

B1.  Let S be the set of all tetrahedra which satisfy (1) the base has area 1, (2) the total face area is 4, and (3) the angles between the base and the other three faces are all equal. Find the element of S which has the largest volume.

B2.  Find the smallest n such that n2-n+11 is the product of four primes (not necessarily distinct).

B3.  A plane is tiled with regular hexagons of side 1. A is a fixed hexagon vertex. Find the number of paths P such that (1) one endpoint of P is A, (2) the other endpoint of P is a hexagon vertex, (3) P lies along hexagon edges, (4) P has length 60, and (5) there is no shorter path along hexagon edges from A to the other endpoint of P.


Fun Math Games for Kids

 
Return to top of page Copyright © 2010 Copyright 2010 Everyday Math - everyday mathematics - math worksheets - math playground - everyday math game - everyday math training - everyday math kindergarten - everyday math resources - everyday math games - everyday math online - everyday math 5th grade - everyday math 4th grade - everyday math 3rd grade everyday math curriculum (C) www.everydaymath.info. All right reseved.